Mathematics
The adjoining figure represents a solid consisting of a right circular cylinder with a hemisphere at one end and a cone at the other. Their common radius is 7 cm. The height of the cylinder and the cone are each of 4 cm. Find the volume of the solid.
Mensuration
38 Likes
Answer
Given, common radius (r) = 7 cm,
Height of cone (h) = 4 cm,
Height of cylinder (H) = 4 cm.
Volume of solid (V) = Volume of cone + Volume of cylinder + Volume of hemisphere.
Hence, the volume of solid = 1540 cm3.
Answered By
24 Likes
Related Questions
A building is in the form of a cylinder surmounted by a hemisphere valted dome and contains of air. If the internal diameter of dome is equal to the total height of the building, find the height of the building.
A toy is in the shape of a right circular cylinder with a hemisphere on one end and a cone on the other. The height and radius of the cylindrical part are 13 cm and 5 cm respectively. The radii of the hemispherical and conical parts are the same as that of the cylindrical part. Calculate the surface area of the toy if the height of the conical part is 12 cm.
A solid is in the form of a right circular cylinder with a hemisphere at one end and a cone at the other end. Their common diameter is 3.5 cm and the height of the cylindrical and conical portions are 10 cm and 6 cm respectively. Find the volume of the solid. (Take π = 3.14)
A rocket is in the form of a right circular cylinder closed at the lower end and surmounted by a cone with the same radius as that of the cylinder. The diameter and the height of the cylinder are 6 cm and 12 cm respectively. If the slant height of the conical portion is 5 cm, find the total surface area and the volume of the rocket. (Use π = 3.14).