Mathematics
A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on the opposite bank is 60°. When he moves 40 m away from the bank, he finds the angle of elevation to be 30°. Find :
(i) the height of the tree, correct to 2 decimal places.
(ii) the width of the river.
Heights & Distances
5 Likes
Answer
Let CD be the tree and B be the position of the person when angle of elevation is 60° and A be the position when angle of elevation is 30°.
(i) In △BCD,
In △ACD,
From figure,
AB = AC - BC
Hence, height of tree = 34.64 meters.
(ii) From part (i), we get :
BC =
= 20 meters.
Hence, width of river = 20 meters.
Answered By
3 Likes
Related Questions
A man in a boat rowing away from a lighthouse 150 m high, takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 45°. Find the speed of the boat.
A man on a cliff observes a boat, at an angle of depression 30°, which is sailing towards the shore to the point immediately beneath him. Three minutes later, the angle of depression of the boat is found to be 60°. Assuming that the boat sails at a uniform speed, determine :
(i) how much more time it will take to reach the shore ?
(ii) the speed of the boat in metre per second, if the height of the cliff is 500 m.
The length of the shadow of a tower standing on level plane is found to be 2y meters longer when the sun's altitude is 30° than when it was 45°. Prove that the height of the tower is meters.
The horizontal distance between two towers is 75 m and the angular depression of the top of the first tower as seen from the top of the second, which is 160 m high, is 45°. Find the height of the first tower.