Physics
What should be the ratio of area of cross section of the master cylinder and wheel cylinder of a hydraulic brake so that a force of 15 N can be obtained at each of it's brake shoe by exerting a force of 0.5 N on the pedal ?
Fluids Pressure
53 Likes
Answer
As we know,
Pressure (P) =
Let,
area of cross section of the master cylinder = A1
area of cross section of the wheel cylinder = A2
force applied on pedal be F1 = 0.5 N
force applied on brake shoe F2 = 15 N
By the principle of hydraulic brakes which works on Pascal's law
Pressure on narrow piston = pressure on broader piston
Hence,
Hence, the ratio of area of cross section = 1 : 30
Answered By
31 Likes
Related Questions
In a hydraulic machine, a force of 2 N is applied on the piston of area of cross section 10 cm 2. What force is obtained on it's piston of area of cross section 100 cm 2?
(a) The diameter of neck and bottom of a bottle are 2 cm and 10 cm respectively. The bottle is completely filled with oil. If the cork in the neck is pressed in with a force of 1.2 kgf, what force is exerted on the bottom of the bottle ?
(b) Name the law/principle you have used to find the force in part (a)
A simple U tube contains mercury to the same level in both of it's arms. If water is poured to a height of 13.6 cm in one arm, how much will be the rise in mercury level in the other arm ?
Given: density of mercury = 13.6 x 103 kg m-3 and density of water = 103 kg m-3
The areas of pistons in a hydraulic machine are 5 cm 2 and 625 cm 2. What force on the smaller piston will support a load of 1250 N on the larger piston ? State any assumption which you make in your calculation.