Physics
What should be the ratio of area of cross section of the master cylinder and wheel cylinder of a hydraulic brake so that a force of 15 N can be obtained at each of it's brake shoe by exerting a force of 0.5 N on the pedal ?
Fluids Pressure
53 Likes
Answer
As we know,
Pressure (P) =
Let,
area of cross section of the master cylinder = A1
area of cross section of the wheel cylinder = A2
force applied on pedal be F1 = 0.5 N
force applied on brake shoe F2 = 15 N
By the principle of hydraulic brakes which works on Pascal's law
Pressure on narrow piston = pressure on broader piston
Hence,
Hence, the ratio of area of cross section = 1 : 30
Answered By
31 Likes
Related Questions
A simple U tube contains mercury to the same level in both of it's arms. If water is poured to a height of 13.6 cm in one arm, how much will be the rise in mercury level in the other arm ?
Given: density of mercury = 13.6 x 103 kg m-3 and density of water = 103 kg m-3
The areas of pistons in a hydraulic machine are 5 cm 2 and 625 cm 2. What force on the smaller piston will support a load of 1250 N on the larger piston ? State any assumption which you make in your calculation.
(a) The diameter of neck and bottom of a bottle are 2 cm and 10 cm respectively. The bottle is completely filled with oil. If the cork in the neck is pressed in with a force of 1.2 kgf, what force is exerted on the bottom of the bottle ?
(b) Name the law/principle you have used to find the force in part (a)
In a hydraulic machine, a force of 2 N is applied on the piston of area of cross section 10 cm 2. What force is obtained on it's piston of area of cross section 100 cm 2?