Mathematics
Pamela factorized the following polynomial :
2x3 + 3x2 - 3x - 2
She found the result as (x + 2)(x - 1)(x - 2). Using remainder and factor theorem, verify whether her result is correct. If incorrect, give the correct result.
Factorisation
22 Likes
Answer
Dividing the polynomial f(x) = 2x3 + 3x2 - 3x - 2 by (x + 2), we get :
⇒ x + 2 = 0
⇒ x = -2
f(-2) = 2(-2)3 + 3(-2)2 - 3(-2) - 2
= 2(-8) + 3(4) + 6 - 2
= -16 + 12 + 6 - 2
= -18 + 18
= 0.
Dividing the polynomial f(x) = 2x3 + 3x2 - 3x - 2 by (x - 1), we get :
⇒ x - 1 = 0
⇒ x = 1
f(1) = 2(1)3 + 3(1)2 - 3(1) - 2
= 2(1) + 3(1) - 3 - 2
= 2 + 3 - 3 - 2
= 0.
Dividing the polynomial f(x) = 2x3 + 3x2 - 3x - 2 by (x - 2), we get :
⇒ x - 2 = 0
⇒ x = 2
f(2) = 2(2)3 + 3(2)2 - 3(2) - 2
= 2(8) + 3(4) - 6 - 2
= 16 + 12 - 6 - 2
= 20.
Since, f(2) ≠ 0
∴ x - 2 does not divide the polynomial 2x3 + 3x2 - 3x - 2.
Dividing the polynomial f(x) by (x + 2)(x - 1) or by (x2 + x - 2), we get :
∴ 2x3 + 3x2 - 3x - 2 = (x2 + x - 2)(2x + 1)
= (x + 2)(x - 1)(2x + 1).
Hence, 2x3 + 3x2 - 3x - 2 = (x + 2)(x - 1)(2x + 1).
Answered By
8 Likes
Related Questions
The marked price of a toy is same as the percentage of GST that is charged. The price of the toy is ₹ 24 including GST. Taking the marked price as x, form an equation and solve it to find x.
(a) Write the nth term (Tn) of an Arithmetic Progression (A.P.) consisting of all whole numbers which are divisible by 3 and 7.
(b) How many of these are two-digit numbers? Write them.
(c) Find the sum of first 10 terms of this A.P.
.
Find matrix M, if M = , where l is the identity matrix.
The mean proportion between two numbers is 6 and their third proportion is 48. Find two numbers.