Physics
Figure shows the velocity-time graph of a particle moving in a straight line.
![Figure shows the velocity-time graph of a particle moving in a straight line. State the nature of motion of particle. Find the displacement of particle at t = 6 s. Does the particle change its direction of motion? Compare the distance travelled by the particle from 0 to 4 s and from 4 s to 6 s. Find the acceleration from 0 to 4 s and retardation from 4 s to 6 s. Motion in one dimension, Concise Physics Solutions ICSE Class 9.](https://cdn1.knowledgeboat.com/img/cp9/velocity-time-graph-particle-straight-line.png)
(i) State the nature of motion of particle.
(ii) Find the displacement of particle at t = 6 s.
(iii) Does the particle change its direction of motion?
(iv) Compare the distance travelled by the particle from 0 to 4 s and from 4 s to 6 s.
(v) Find the acceleration from 0 to 4 s and retardation from 4 s to 6 s.
Motion in One Dimension
39 Likes
Answer
(i) As we observe the graph, we find that, the nature of motion of particle is that, the particles are uniformly accelerated from 0 to 4s and then uniformly retarded from 4s to 6s.
(ii) As we know,
displacement of particles can be obtained by finding the area enclosed by the graph in that part with the time axis up to that instance.
At t = 6 s,
Displacement = area of triangle
Substituting the values in the formula above, we get,
Hence,
Displacement of particle at t = 6 s is 6 m
(iii) No, the particle does not change its direction of motion.
(iv) At t = 0 to 4 s,
Distance covered = area of triangle
Substituting the values in the formula above, we get,
Hence,
Distance covered between 0 to 4 s = 4 m
At t = 4 s to 6 s,
Distance covered = area of triangle
Substituting the values in the formula above, we get,
Hence,
Distance covered between 4s to 6 s = 2 m
∴ Distance covered between 0 to 4 s : Distance covered between 4 s to 6 s = 4 : 2 = 2 : 1
(v) Acceleration in part 0 s to 4 s = slope of graph
Hence,
Acceleration in part 0 s to 4 s = 0.5 m s-2
As we know,
Retardation in part 4 s to 6 s = slope of graph
Acceleration = -1 ms-2 and as we know retardation is negative acceleration
Hence, Retardation in part 4 s to 6 s = 1 m s-2
Answered By
21 Likes
Related Questions
The velocity-time graph of a moving body is given below in figure
Find —
(i) The acceleration in parts AB, BC and CD.
(ii) Displacement in each part AB, BC, CD, and
(iii) Total displacement.
A ball moves on a smooth floor in a straight line with a uniform velocity 10 m s-1 for 6 s. At t = 6 s, the ball hits a wall and comes back along the same line to the starting point with same speed. Draw the velocity-time graph and use it to find the total distance travelled by the ball and its displacement.
The correct equation of motion is —
- v = u + at
- S = ut + at2
- v2 = u2 + 2aS
- All of these.
When a body starts from rest, the equation of motion takes the form:
- v = u
- v = at
- v = at2
- S = ut + at2