KnowledgeBoat Logo

Physics

A train is moving with a velocity of 90 km h-1. It is brought to stop by applying the brakes which produce a retardation of 0.5 m s-2.

Find —

(i) the velocity after 10 s, and

(ii) the time taken by the train to come to rest.

Motion in One Dimension

70 Likes

Answer

(i) As we know, according to the equation of motion,

v = u + at

Given,

u = 90 km h-1

velocity in m s-1

90km h1=90km1h=90×1000m60×60s90km h1=90×10m6×6s90km h1=15×10m1×6s90km h1=25×ms90 \text{km h}^{-1} = \dfrac{90 \text{km}}{1\text{h}} = \dfrac {90 \times 1000 \text{m}}{60 \times 60 \text{s}} \\[0.5em] \Rightarrow 90 \text{km h}^{-1} = \dfrac {90 \times 10 \text{m}}{6 \times 6 \text{s}} \\[0.5em] \Rightarrow90 \text{km h}^{-1} = \dfrac {15 \times 10 \text{m}}{1 \times 6 \text{s}} \\[0.5em] \Rightarrow 90 \text{km h}^{-1} = \dfrac {25 \times \text{m}}{\text{s}} \\[0.5em]

Hence, 90 km h-1 is equal to 25 m s-1.

v = 0 (as the train stops on application of brakes)

t = 10 s

retardation = -a = -0.5 m s-2

Substituting the values in the formula above we get,

v=25+[(0.5)×10]v=25+[5]v=20m s1\text {v} = 25 + [(-0.5) \times 10] \\[0.5em] \text {v} = 25 + [- 5] \\[0.5em] \Rightarrow \text {v} = 20 \text {m s}^{-1} \\[0.5em]

Hence, the velocity after 10 s = 20 m s-1.

(ii) As we know, according to the equation of motion,

v = u + at

Substituting the values in the formula above, to get the time taken by the train to come to rest.

0=25+(0.5×t)0=250.5t0.5t=25t=250.5t=2505t=50s\text {0} = 25 + (-0.5 \times \text{t}) \\[0.5em] \text {0} = 25 - 0.5 \text{t} \\[0.5em] 0.5 \text{t} = 25 \\[0.5em] \Rightarrow \text {t} = \dfrac {25}{0.5} \\[0.5em] \Rightarrow \text {t} = \dfrac {250}{5} \\[0.5em] \Rightarrow \text {t} = 50 \text {s} \\[0.5em]

Hence, the time taken by the train to come to rest = 50 s.

Answered By

44 Likes


Related Questions