KnowledgeBoat Logo

Mathematics

A test tube consists of a hemisphere and a cylinder of the same radius. The volume of the water required to fill the whole tube is 51596\dfrac{5159}{6} cm3, and 42356\dfrac{4235}{6} cm3 of water is required to fill the tube to a level which is 4 cm below the top of the tube. Find the radius of the tube and the length of its cylindrical part.

Mensuration

ICSE

2 Likes

Answer

Given,

Let radius of hemisphere be r cm and height of cylindrical portion be h cm.

A test tube consists of a hemisphere and a cylinder of the same radius. The volume of the water required to fill the whole tube is cm<sup>3</sup>, and cm<sup>3</sup> of water is required to fill the tube to a level which is 4 cm below the top of the tube. Find the radius of the tube and the length of its cylindrical part. Cylinder, Cone, Sphere, Concise Mathematics Solutions ICSE Class 10.

Total volume of test tube = Volume of hemisphere + Volume of cylinder

51596=23πr3+πr2h51596=πr2(23r+h)51596=πr2(2r+3h3)πr2(2r+3h)=51596×3πr2(2r+3h)=51592..............(1)\Rightarrow \dfrac{5159}{6} = \dfrac{2}{3}πr^3 + πr^2h \\[1em] \Rightarrow \dfrac{5159}{6} = πr^2\Big(\dfrac{2}{3}r + h\Big) \\[1em] \Rightarrow \dfrac{5159}{6} = πr^2\Big(\dfrac{2r + 3h}{3}\Big) \\[1em] \Rightarrow πr^2(2r + 3h) = \dfrac{5159}{6} \times 3 \\[1em] \Rightarrow πr^2(2r + 3h) = \dfrac{5159}{2} …………..(1)

Given,

42356\dfrac{4235}{6} cm3 of water is required to fill the tube to a level which is 4 cm below the top of the tube.

42356=Vol. of hemisphere + Vol. of cylinder[upto (h - 4) cm]42356=23πr3+πr2(h4)42356=πr2(23r+h4)42356=πr2(2r+3h123)4235×36=πr2(2r+3h)12πr242352=πr2(2r+3h)12πr2\therefore \dfrac{4235}{6} = \text{Vol. of hemisphere + Vol. of cylinder[upto (h - 4) cm]} \\[1em] \Rightarrow \dfrac{4235}{6} = \dfrac{2}{3}πr^3 + πr^2(h - 4) \\[1em] \Rightarrow \dfrac{4235}{6} = πr^2\Big(\dfrac{2}{3}r + h - 4\Big) \\[1em] \Rightarrow \dfrac{4235}{6} = πr^2\Big(\dfrac{2r + 3h - 12}{3}\Big) \\[1em] \Rightarrow \dfrac{4235 \times 3}{6} = πr^2(2r + 3h) - 12πr^2 \\[1em] \Rightarrow \dfrac{4235}{2} = πr^2(2r + 3h) - 12πr^2

Substituting value of πr2(2r + 3h) from equation 1 in above equation.

42352=5159212πr212πr2=515924235212πr2=9242r2=9242×12πr2=92424×227r2=924×724×22r2=6468528r2=12.25r=12.25r=3.5 cm.\Rightarrow \dfrac{4235}{2} = \dfrac{5159}{2} - 12πr^2 \\[1em] \Rightarrow 12πr^2 = \dfrac{5159}{2} - \dfrac{4235}{2} \\[1em] \Rightarrow 12πr^2 = \dfrac{924}{2} \\[1em] \Rightarrow r^2 = \dfrac{924}{2 \times 12π} \\[1em] \Rightarrow r^2 = \dfrac{924}{24 \times \dfrac{22}{7}} \\[1em] \Rightarrow r^2 = \dfrac{924 \times 7}{24 \times 22} \\[1em] \Rightarrow r^2 = \dfrac{6468}{528} \\[1em] \Rightarrow r^2 = 12.25 \\[1em] \Rightarrow r = \sqrt{12.25} \\[1em] \Rightarrow r = 3.5 \text{ cm}.

Substituting value of r in equation 1, we get :

πr2(2r+3h)=51592227×(3.5)2×(2×3.5+3h)=5159222×0.5×3.5×(7+3h)=5159238.5×(7+3h)=515927+3h=51592×38.57+3h=5159777+3h=673h=6773h=60h=603h=20 cm.\Rightarrow πr^2(2r + 3h) = \dfrac{5159}{2} \\[1em] \Rightarrow \dfrac{22}{7} \times (3.5)^2 \times (2 \times 3.5 + 3h) = \dfrac{5159}{2} \\[1em] \Rightarrow 22 \times 0.5 \times 3.5 \times (7 + 3h) = \dfrac{5159}{2} \\[1em] \Rightarrow 38.5 \times (7 + 3h) = \dfrac{5159}{2} \\[1em] \Rightarrow 7 + 3h = \dfrac{5159}{2 \times 38.5} \\[1em] \Rightarrow 7 + 3h = \dfrac{5159}{77} \\[1em] \Rightarrow 7 + 3h = 67 \\[1em] \Rightarrow 3h = 67 - 7 \\[1em] \Rightarrow 3h = 60 \\[1em] \Rightarrow h = \dfrac{60}{3} \\[1em] \Rightarrow h = 20 \text{ cm}.

Hence, radius of cylindrical part = 3.5 cm and height = 20 cm.

Answered By

1 Like


Related Questions