KnowledgeBoat Logo
|

Mathematics

Vivek invests ₹ 4,500 in 8%, ₹ 10 shares at ₹ 15. He sells the shares when the price rises to ₹ 30, and invests the proceeds in 12% ₹ 100 shares at ₹ 125. Calculate :

(i) the sale proceeds

(ii) the number of ₹ 125 shares he buys

(iii) the change in his annual income from dividend.

Shares & Dividends

97 Likes

Answer

(i) Investment = ₹ 4,500

M.V. = ₹ 15

No. of shares = 450015\dfrac{4500}{15} = 300.

Given, shares are sold when price rises to ₹ 30,

Sale proceeds = 300 × 30 = ₹ 9,000.

Hence, sale proceeds = ₹ 9,000.

(ii) M.V. of second type of shares = ₹ 125

Investment = ₹ 9,000

No. of shares = 9000125\dfrac{9000}{125} = 72.

Hence, no. of ₹ 125 shares = 72.

(iii) Annual income = No. of shares × Rate of div. × N.V. of 1 share

In first case :

Annual income = 300 × 8100×10\dfrac{8}{100} \times 10 = ₹ 240.

In second case :

Annual income = 72 × 12100×100\dfrac{12}{100} \times 100 = ₹ 864.

Difference = ₹ 864 - ₹ 240 = ₹ 624.

Hence, difference in annual income = ₹ 624.

Answered By

28 Likes


Related Questions