Physics
The temperature of 170 g of water at 50° C is lowered to 5° C by adding certain amount of ice to it. Find the mass of ice added. Given : specific heat capacity of water = 4200 J kg-1 K-1 and specific latent heat of ice = 336000 J kg-1.
Calorimetry
116 Likes
Answer
Given,
mw = 170 g = 0.17 kg
specific heat capacity of water = 4200 J kg-1 K-1
specific latent heat of ice = 336000 J kg-1
mi = ?
Heat energy given out by water in lowering it's temperature from 50° C to 5° C
= m x c x change in temperature
= 0.17 x 4200 x (50 - 5)
= 0.17 x 4200 x 45
= 32,130
Heat energy taken by m kg ice to melt into water at 0° C
= mi x L
= mi x 336000
Heat energy taken by water at 0° C to raise it's temperature to 5° C
= mi x c x change in temperature
= mi x 4200 x (5 - 0)
= mi x 4200 x 5
= mi x 21000
heat energy released = heat energy taken
Substituting the values we get,
Hence, the mass of ice added = 90 g
Answered By
61 Likes
Related Questions
A refrigerator converts 100 g of water at 20° C to ice at -10° C in 73.5 min. Calculate the average rate of heat extraction in watt. The specific heat capacity of water is 4.2 J g-1 K-1 , specific latent heat of ice is 336 J g-1 and the specific heat capacity of ice is 2.1 J g-1 K-1.
In an experiment, 17 g of ice is used to bring down the temperature of 40 g of water at 34° C to it's freezing temperature. The specific heat capacity of water is 4.2 J g-1 K-1. Calculate the specific latent heat of ice. State one important assumption made in the above calculation.
Find the result of mixing 10 g of ice at -10° C with 10 g of water at 10° C. Specific heat capacity of ice = 2.1 J g-1 K-1, specific latent heat of ice = 336 J g-1, and specific heat capacity of water = 4.2 J g-1 K-1.
A piece of ice of mass 40 g is added to 200 g of water at 50° C. Calculate the final temperature of water when all the ice has melted. Specific heat capacity of water = 4200 J kg-1 K-1 and specific latent heat of fusion of ice = 336 x 103 J kg-1.