If xa=yb=zcx^a = y^b = z^cxa=yb=zc and y2=xzy^2 = xzy2=xz; prove that b=2aca+cb = \dfrac{2ac}{a+c}b=a+c2ac.
1 Like
Let xa=yb=zc=kx^a = y^b = z^c = kxa=yb=zc=k
⇒ xa=kx^a = kxa=k, yb=ky^b = kyb=k, zc=kz^c = kzc=k
⇒ x=k1ax = k^{\dfrac{1}{a}}x=ka1, y=k1by = k^{\dfrac{1}{b}}y=kb1, z=k1cz = k^{\dfrac{1}{c}}z=kc1
Substitute the values of x, y and z in y2=xzy^2 = xzy2=xz,
⇒(k1b)2=k1a×k1c⇒k2b=k1a+1c⇒2b=1a+1c⇒2b=c+aac⇒2×ac=b(a+c)⇒b=2aca+c⇒ \Big(k^{\dfrac{1}{b}}\Big)^2 = k^{\dfrac{1}{a}} \times k^{\dfrac{1}{c}}\\[1em] ⇒ k^{\dfrac{2}{b}} = k^{\dfrac{1}{a} + \dfrac{1}{c}}\\[1em] ⇒ \dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}\\[1em] ⇒ \dfrac{2}{b} = \dfrac{c + a}{ac} \\[1em] ⇒ 2 \times ac = b(a + c)\\[1em] ⇒ b = \dfrac{2ac}{a + c}⇒(kb1)2=ka1×kc1⇒kb2=ka1+c1⇒b2=a1+c1⇒b2=acc+a⇒2×ac=b(a+c)⇒b=a+c2ac
Hence, b=2aca+cb = \dfrac{2ac}{a+c}b=a+c2ac.
Answered By
Evaluate:
14+(0.01)−12×(5)−(27)23\sqrt\dfrac{1}{4} + (0.01)^{-\dfrac{1}{2}} \times (5) - (27)^\dfrac{2}{3}41+(0.01)−21×(5)−(27)32
(14)−2−3(32)25×(7)0+(916)−12\Big(\dfrac{1}{4}\Big)^{-2} - 3(32)^\dfrac{2}{5}\times (7)^0 + \Big(\dfrac{9}{16}\Big)^{-\dfrac{1}{2}}(41)−2−3(32)52×(7)0+(169)−21
1(216)−23÷1(27)−43\dfrac{1}{(216)^{-\dfrac{2}{3}}} \div \dfrac{1}{(27)^{-\dfrac{4}{3}}}(216)−321÷(27)−341
[5(813+2713)3]14\Big[5\Big(8^{\dfrac{1}{3}}+ 27^{\dfrac{1}{3}}\Big)^3\Big]^{\dfrac{1}{4}}[5(831+2731)3]41